FantasticMao 技术笔记
BlogGitHub
  • README
  • C & Unix
    • C
      • 《C 程序设计语言》笔记
      • C 语言中的陷阱
      • CMake 示例
      • GNU make
      • LLVM Clang
      • Nginx 常用模块
      • Vim 常用命令
    • Unix-like
      • 《深入理解计算机系统》笔记
      • 《UNIX 环境高级编程》笔记 - UNIX 基础知识
      • 《UNIX 环境高级编程》笔记 - 文件 IO
      • 《UNIX 环境高级编程》笔记 - 标准 IO 库
      • 《鳥哥的 Linux 私房菜》笔记 - 目录配置
      • 《鳥哥的 Linux 私房菜》笔记 - 认识与学习 bash
      • 《鳥哥的 Linux 私房菜》笔记 - 任务管理
      • OpenWrt 中的陷阱
      • iptables 工作机制
  • Go
    • 《A Tour of Go》笔记
    • Go vs C vsJava
    • Go 常用命令
    • Go 语言中的陷阱
  • Java
    • JDK
      • 《Java 并发编程实战》笔记 - 线程池的使用
      • 设计模式概览
      • 集合概览
      • HashMap 内部算法
      • ThreadLocal 工作机制
      • Java Agent
    • JVM
      • 《深入理解 Java 虚拟机》笔记 - Java 内存模型与线程
      • JVM 运行时数据区
      • 类加载机制
      • 垃圾回收算法
      • 引用类型
      • 垃圾收集算法
      • 垃圾收集器
    • Spring
      • Spring IoC 容器扩展点
      • Spring Transaction 声明式事务管理
      • Spring Web MVC DispatcherServlet 工作机制
      • Spring Security Servlet 实现原理
    • 其它
      • 《Netty - One Framework to rule them all》演讲笔记
      • Hystrix 设计与实现
  • JavaScript
    • 《写给大家看的设计书》笔记 - 设计原则
    • 《JavaScript 权威指南》笔记 - jQuery 类库
  • 数据库
    • ElasticSearch
      • ElasticSearch 概览
    • HBase
      • HBase 数据模型
    • Prometheus
      • Prometheus 概览
      • Prometheus 数据模型和指标类型
      • Prometheus 查询语法
      • Prometheus 存储原理
      • Prometheus vs InfluxDB
    • Redis
      • 《Redis 设计与实现》笔记 - 简单动态字符串
      • 《Redis 设计与实现》笔记 - 链表
      • 《Redis 设计与实现》笔记 - 字典
      • 《Redis 设计与实现》笔记 - 跳跃表
      • 《Redis 设计与实现》笔记 - 整数集合
      • 《Redis 设计与实现》笔记 - 压缩列表
      • 《Redis 设计与实现》笔记 - 对象
      • Redis 内存回收策略
      • Redis 实现分布式锁
      • Redis 持久化机制
      • Redis 数据分片方案
      • 使用缓存的常见问题
    • MySQL
      • 《高性能 MySQL》笔记 - Schema 与数据类型优化
      • 《高性能 MySQL》笔记 - 创建高性能的索引
      • 《MySQL Reference Manual》笔记 - InnoDB 和 ACID 模型
      • 《MySQL Reference Manual》笔记 - InnoDB 多版本
      • 《MySQL Reference Manual》笔记 - InnoDB 锁
      • 《MySQL Reference Manual》笔记 - InnoDB 事务模型
      • B-Tree 简述
      • 理解查询执行计划
  • 中间件
    • gRPC
      • gRPC 负载均衡
    • ZooKeeper
      • ZooKeeper 数据模型
    • 消息队列
      • 消息积压解决策略
      • RocketMQ 架构设计
      • RocketMQ 功能特性
      • RocketMQ 消息存储
  • 分布式系统
    • 《凤凰架构》笔记
    • 系统设计思路
    • 系统优化思路
    • 分布式事务协议:二阶段提交和三阶段提交
    • 分布式系统的技术栈
    • 分布式系统的弹性设计
    • 单点登录解决方案
    • 容错,高可用和灾备
  • 数据结构和算法
    • 一致性哈希
    • 布隆过滤器
    • 散列表
  • 网络协议
    • 诊断工具
    • TCP 协议
      • TCP 报文结构
      • TCP 连接管理
由 GitBook 提供支持
在本页
  • 容错
  • 高可用
  • 灾备
  • 参考资料
  1. 分布式系统

容错,高可用和灾备

最后更新于1年前

容错

容错(fault tolerance)指的是,发生故障时,系统还能继续运行。

飞机有四个引擎,如果一个引擎坏了,剩下三个引擎,还能继续飞,这就是 " 容错 "。同样的,汽车的一个轮子扎破了,剩下三个轮子,也还是勉强能行驶。

容错的目的是,发生故障时,系统的运行水平可能有所下降,但是依然可用,不会完全失败。

高可用

高可用(high availability)指的是,系统能够比正常时间更久地保持一定的运行水平。

汽车的备胎就是一个高可用的例子。如果没有备胎,轮胎坏了,车就开不久了。备胎延长了汽车行驶的可用时间。

注意,高可用不是指系统不中断(那是容错能力),而是指一旦中断能够快速恢复,即中断必须是短暂的。如果需要很长时间才能恢复可用性,就不叫高可用了。上面例子中,更换备胎就必须停车,但只要装上去,就能回到行驶状态。

灾备

灾备(又称灾难恢复,disaster recovery)指的是,发生灾难时恢复业务的能力。

上图中,飞机是你的 IT 基础设施,飞行员是你的业务,飞行员弹射装置就是灾备措施。一旦飞机即将坠毁,你的基础设施就要没了,灾备可以让你的业务幸存下来。

灾备的目的就是,保存系统的核心部分。一个好的灾备方案,就是从失败的基础设施中获取企业最宝贵的数据,然后在新的基础设施上恢复它们。注意,灾备不是为了挽救基础设置,而是为了挽救业务。

参考资料

容错,高可用和灾备
fault tolerance
high availability
disaster recovery